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Segmentation of Dual-Axis Swallowing
Accelerometry Signals in Healthy Subjects With
Analysis of Anthropometric Effects on Duration
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Abstract—Dysphagia (swallowing difficulty) is a serious and de-
bilitating condition that often accompanies stroke, acquired brain
injury, and neurodegenerative illnesses. Individuals with dyspha-
gia are prone to aspiration (the entry of foreign material into the
airway), which directly increases the risk of serious respiratory
consequences such as pneumonia. Swallowing accelerometry is a
promising noninvasive tool for the detection of aspiration and the
evaluation of swallowing. In this paper, dual-axis accelerometry
was implemented since the motion of the hyolaryngeal complex
occurs in both anterior–posterior and superior–inferior directions
during swallowing. Dual-axis cervical accelerometry signals were
acquired from 408 healthy subjects during dry, wet, and wet chin
tuck swallowing tasks. The proposed segmentation algorithm is
based on the idea of sequential fuzzy partitioning of the signal and
is well suited for long signals with nonstationary variance. The algo-
rithm was validated with simulated signals with known swallowing
locations and a subset of 295 real swallows manually segmented by
an experienced speech language pathologist. In both cases, the al-
gorithm extracted individual swallows with over 90% accuracy.
The time duration analysis was carried out with respect to gender,
body mass index (BMI), and age. Demographic and anthropomet-
ric variables influenced the duration of these segmented signals.
Male participants exhibited longer swallows than female partici-
pants (p = 0.05). Older participants and participants with higher
BMIs exhibited swallows with significantly longer (p = 0.05) du-
ration than younger participants and those with lower BMIs, re-
spectively.

Index Terms—Accelerometry, dysphagia, segmentation, time
duration analysis.

I. INTRODUCTION

THE MEASUREMENT of neck vibrations associated with
deglutition is known as swallowing accelerometry, a po-

tentially informative adjunct to bedside screening for dyspha-
gia [1]–[6]. Accelerometric measurements are minimally inva-
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sive, requiring only the superficial attachment of a sensor ante-
rior to the thyroid notch. There has been an interest in exploit-
ing this vibration signal for dysphagia screening. Combining
accelerometry and swallow pressure, Suryanarayanana et al. [7]
developed a hand-crafted fuzzy rule base to classify 16 patients
with dysphagia according to aspiration risk. From a physiolog-
ical perspective, Reddy et al. [4] attributed the accelerometric
signal to the extent of laryngeal elevation during swallowing,
thus arguing that accelerometry would be of diagnostic value.
On this premise, Das et al. [5] proposed a hybrid fuzzy logic
committee of neural networks trained to accurately distinguish
between swallows from a dozen healthy subjects and 16 with
dysphagia. In a pediatric study involving children with dyspha-
gia secondary to cerebral palsy, swallow accelerometry signals
were found to be largely nonstationary [8], while an offline
radial basis classifier using two time-domain features differen-
tiated between manually segmented aspiration events and safe
swallows with 80% sensitivity and specificity [6].

A critical first step in the systematic analysis of swallowing
accelerometry signals is the demarcation of individual swallows
within an extended recording of vibrations collected from the
neck. Previous studies have only investigated a small number of
swallows, and hence, data were conducive to manual segmenta-
tion by a human analyst. Larger volumes of accelerometry data
necessitate an automatic method to mitigate human error due
to fatigue or oversight and to ensure consistent segmentation
criteria. Segmentation algorithms have been developed in other
fields, e.g., heart sounds analysis [9], speech analysis [10], elec-
troencephalogram signals analysis [11], knee joint vibroarthro-
graphic signals analysis [12], and in the analysis of uterine
magnetomyogram contractions during pregnancy [13], to name
a few. In particular, several successful methods rely on multiple
channels of information to enhance segmentation [14], [15]. In
swallow accelerometry, we can exploit both anterior–posterior
(A-P) and superior–inferior (S-I) vibrations for this purpose. In
addition, there appears to be a physiological basis for consid-
ering dual-axis accelerometry, given the 2-D movement of the
hyoid and larynx during swallowing [16], [17].

The contributions of this paper are twofold. First, this pa-
per introduces a systematic algorithm for the segmentation of
dual-axis swallowing accelerometry signals, a problem that has
not been previously addressed in the literature. The proposed
segmentation algorithm considers the stochastic properties of
swallowing signals in both directions, A-P and S-I, successfully
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Fig. 1. Location and orientation of the sensor (shaded oval) on a participant’s
neck.

extracting events associated with swallowing in over 90% of
all cases considered. Second, this paper presents the analysis
of the time duration of swallows with respect to gender, body
mass index (BMI), and age for 408 healthy subjects. In order
to eventually recognize differences between normal and dys-
phagic swallowing, the healthy, nondysphagic swallow must
first be rigorously studied [18]. In addition, three types of swal-
lows are considered, namely, saliva swallows, water swallows
in a neutral position, and water swallows in a chin tuck posi-
tion. These types of swallows are typically considered during
swallowing assessment [19].

The paper is organized as follows. Section II outlines the
experimental approach and data acquisition procedures. In
Section III, segmentation is considered in detail and an algo-
rithm for dual-axis swallowing accelerometry signals is pro-
posed. Section IV discusses the results of segmentation and
time duration analysis.

II. METHODOLOGY

In all, 408 participants (aged 18–65) were recruited over a
three-month period from a public science center. All participants
provided written consent. The study protocol was approved by
the research ethics boards of the Toronto Rehabilitation Institute
and the Bloorview Kids Rehab, both located in Toronto, ON,
Canada. Participants had no documented swallowing disorders
and passed an oral mechanism exam prior to participation.

Participants sat behind a screen for privacy. They answered a
set of questions relating to medical and swallowing history. A
speech language pathologist (SLP) measured the height, weight,
body fat percentage (BIA Meter, BC-550, Tanita), and mandibu-
lar jaw length of each participant. A dual-axis accelerometer
(ADXL322, Analog Devices) was attached to the participant’s
neck (anterior to the cricoid cartilage) using double-sided tape.
The axes of acceleration were aligned to the A-P and S-I direc-
tions, as shown in Fig. 1. Data were bandpass-filtered in hard-
ware with a passband of 0.1–3000 Hz and sampled at 10 kHz

using a custom LabVIEW program running on a laptop. Data
were saved for subsequent offline analysis.

With the accelerometer attached, each participant was cued
to perform five saliva swallows. After each swallow, there was a
brief rest to allow for saliva production. Subsequently, the par-
ticipant completed five water swallows by cup with their chin
in the natural position (i.e., perpendicular to the floor) and five
water swallows in the chin-tucked position. Water was served
chilled in ten individual cups so that pre- and postswallow cup
weight could be measured on a digital scale. These measure-
ments facilitated the estimation of bolus volume. Previous re-
search suggested that natural sip size during this kind of task
is between 5 and 8 mL per sip [20]. The entire data collection
session lasted 15 min per participant.

Examination of the collected data revealed that some acquired
signals were inadequate for further analysis due to the presence
of strong disturbances, such as vocalizations, coughing, and
excessive head movements. Nevertheless, 9800 swallows were
retained for subsequent analysis.

III. SEGMENTATION OF DUAL-AXIS ACCELEROMETRY SIGNALS

Often signals can be considered to have segments with dif-
ferent stochastic behavior such that a realization of a process
given by N points, {xi |1 ≤ i ≤ N}, can be composed of K
segments with K − 1 transition times τ = {t1 , t2 , . . . , tK−1},
where tk ∈ Z

+ . Furthermore, the data within the kth segment
can be assumed to follow an independent and identically dis-
tributed Gaussian distribution with variance σ2

k . Hence, the prob-
ability density function (pdf) for data within the kth segment
would be given by

ln p(xtk −1 , . . . , xtk −1
∣∣σ2

k ) = − tk − tk−1

2
ln

(
2πσ2

k

)
−

∑tk −1
i=tk −1

xi

2σ2
k

. (1)

By writing θK = {σ2
1 , σ2

2 , . . . , σ2
k}, which indicates the vector

of variances for all K segments, and assuming that these seg-
ments are statistically independent, the pdf of the dataset {x}
can be written as

p (x |τ, θK ,K ) =
K∏

k=1

p(xtk −1 , . . . , xtk −1

∣∣σ2
k ) (2)

where, by definition, t0 ≡ 0 and tk−1 ≡ N . Then, the segmen-
tation problem demands a joint estimation of τ , θK , and K. The
determined values would represent the best fit of the data x to
(2). Different solutions to this segmentation problem have been
proposed in the literature over the years [21]– [23]. However,
computational costs associated with the proposed solutions are
very high. Recently, a very simple algorithm that determines the
number of segments automatically and avoids threshold tuning
was proposed by Wang and Willett [24].
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A. Minimum Description Length (MDL) Based Sequential
Segmentation

Wang and Willett’s algorithm begins with an initial assump-
tion that the length of any segment is bounded below by Lmin
and above by Lmax

Lmin ≤ tk − tk−1 ≤ Lmax . (3)

This assumption mandates that there is at most one change dur-
ing any interval of length Lmin . In other words, for {xi |tk−1 ≤
i ≤ tk + Lmin − 1}, only two situations are possible, and they
are given by the following hypotheses.

Hypothesis 1: xi ∼ N(0, σ2
k ), for tk−1 ≤ i ≤ tk + Lmin−1.

Hypothesis 2: ∃lo ∈ [Lmin , Lmax], such that xi ∼ N(0, σ2
k )

for tk−1 ≤ i ≤ lo and xi ∼ N(0, σ2
k+1) for lo + 1 ≤ i ≤ tk +

Lmin − 1.

Here, σ2
k and σ2

k+1 are distinguishable. In other words, the
segment is either homo- or heteroscedastic. The value of lo is
estimated through the following relation [24]:

l̂o = arg max
lo ∈[Lm in ,Lm a x ]

{
− lo − tk−1

2
ln(2πσ̂2

k ) −
∑lo

i=tk −1
x2

i

2σ̂2
k

− tk+Lmin − 1−(lo+1)
2

ln
(
2πσ̂2

k+1
)

−
∑tk +Lm in −1

i= lo +1 x2
i

2σ̂2
k+1

}
(4)

where

σ̂2
k =

1
lo − tk−1 − 1

lo∑
i=tk −1

x2
i (5)

σ̂2
k+1 =

1
Lmin

lo +Lm in∑
i= lo +1

x2
i . (6)

The data contained in the segment given χ = {xi |tk−1 ≤ i ≤
l̂o + Lmin − 1} satisfies either case 1 or case 2. In order to
determine which hypothesis best describes the segment χ, the
MDL principle is employed as follows [24]:

ĉ = arg max
c∈[1,2]

MDL(c;χ)

= arg max
c∈[1,2]

Ic(Nχ) − 2c − 1
2

ln(Nχ) (7)

where Nχ is the length of χ, and

Ic(Nχ) = max
{T1 ,T2 ,...,Tl−1 }∈[Lm in ,Lm a x ],T0 =1,Tl =Nχ

×
c∑

i=1

−Ti − Ti−1

2
(
ln

(
2πσ̂2

i

)
+ 1

)
(8)

with σ̂2
i being the maximum likelihood (ML) estimate of vari-

ance for time interval T ∈ [Ti−1 , Ti ].
Based on the value produced by (7), a decision is reached

for the given segment. This procedure continues until the entire
signal is analyzed. Wang and Willett also proposed a post hoc

refinement stage to improve the accuracy of segmentation. For
full details about the algorithm and its implementation, refer
to [24].

For simulated Gaussian time series with zero mean and piece-
wise constant variance, and lengths up to 6000 points, the algo-
rithm reportedly performs accurately, with computation times
comparable to, if not shorter than, those of competing algo-
rithms [24]. However, for the swallowing records considered
in this paper, which are of considerable length (�104 points),
the approximately linear complexity of the algorithm results
in a marked increase in computational time. This computation
cost is further heightened when considering the two realizations
of the same process (i.e., dual-axis swallowing accelerometry).
Swallowing accelerometry signals often possess nonstationary
variance [8], and hence, the present algorithm may “overesti-
mate” the number of segments. For example, a slight change
in variance within the boundaries of a given segment would
cause the algorithm to detect a transition point, when, in fact,
the segment may be a single, cohesive swallowing event from
the physiological point of view. Hence, for the present applica-
tion, it is necessary to detect distinct physiological events (i.e.,
swallowing versus nonswallowing activity), rather than small
fluctuations in variance. In the next section, a modified version
of the Wang and Willet’s algorithm is proposed to deal with
the aforementioned challenges of lengthy dual-axis swallowing
accelerometry signals.

B. Proposed Sequential Segmentation

The computational bottleneck of Wang and Willet’s algorithm
lies in the optimization procedures to estimate the transition
point l0 and the segment class ĉ. To reduce the computational
load, one may exploit characteristics of the problem at hand to
simplify the optimization procedures. First, exact locations of
the onsets and offsets of swallows are unknown and can only
be approximately determined. Hence, forcing the algorithm to
determine the optimal value for l0 , i.e., the exact locations of
onsets and offsets, is unnecessary in the swallowing application.
Second, the present goal of segmentation is not to detect small
changes in variances, but rather large changes. In light of the
above, we propose the following two modified hypotheses for
sequential segmentation.

Hypothesis 1: φi ∼ g1(φ|θ1), for tk−1 ≤ i ≤ tk−1 .
Hypothesis 2: φi ∼ g2(φ|θ2), for tk−1 ≤ i ≤ tk−1 .

Here, φ is a variable related to x, g1(φ|θ1) and g2(φ|θ2) are
conditional pdfs, and θ1 and θ2 are unknown parameter vectors.
The pdf g1(φ|θ1) represents the absence of swallowing activ-
ity, while g2(φ|θ2) models the presence of swallowing activity.
Before discussing the detection procedure, we first examine the
formulation of a variable φ, which is related to x.

Due to the fact that datasets are very long and the swallow-
ing signals are buried in contaminating noise-like signals likely
arising from both instrumentation and physiological sources,
the relationship between φ and x is to be formed in a piecewise
and stochastic manner. To follow Wang and Willett’s algorithm,
it is assumed that φ is a piecewise constant estimate of the
variance of x, i.e., choose L ∈ Z

+ satisfying relation (3) and
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SEJDIĆ et al.: SEGMENTATION OF DUAL-AXIS SWALLOWING ACCELEROMETRY SIGNALS IN HEALTHY SUBJECTS 1093

M > L,M ∈ Z
+ . Furthermore, it is assumed that L < M in

order to have M − L overlaps in sequential procedure. To re-
late the entire signal x to the variable φ, the following steps are
proposed.

1) Initialize νk = 1 and set y = {xi |νk ≤ i ≤ νk + M − 1}.
2) Estimate the sample mean of y

µ̂y = E {y} ≈ 1
M

M∑
i=1

yi. (9)

3) Estimate the sample standard deviation of y in an ML
sense

σ̂y =

√√√√ 1
M

M∑
i=1

(yi − µ̂y )2 . (10)

4) Set the variable φ as follows:

φi = σ̂y , for νk ≤ i ≤ νk + M − 1. (11)

5) Set νk+1 = νk + L and proceed to step 2 until the entire
signal is analyzed.

It can be assumed that the vector φ of standard deviations is
sampled from g1(φ|θ1) and g2(φ|θ2) with a priori probabilities
P1 and P2 , respectively, where 0 < P1 , P2 < 1, and P1 + P2 =
1. However, since these a priori probabilities are not known, it
has to be assumed that φ is sampled from p(φ|ξ), which is a pdf
representing a mixture of g1(φ|θ1) and g2(φ|θ2), with mixing
parameters being P1 and P2 . In other words, p(φ|ξ) is given by

p(φ |ξ ) = P1g1(φ |θ1 ) + P2g2(φ |θ2 ) (12)

where ξ = {P1 , P2 , θ1 , θ2}. Therefore, the mixture separation
problem boils down to the estimation of the members of ξ. Let
the set Φ drawn from p(φ|ξ) represent all possible outcomes of
independent trials, then the ML estimate of ξ would be given by

ξ∗ = arg max
ξ

∑
φ∈Φ

ln p(φ |ξ ). (13)

Nevertheless, finding the ML estimate of ξ for dual-axis swal-
lowing accelerometry signals can be computationally costly.
Hence, some approximation is needed. Before processing fur-
ther, let us consider the available information. The location and
duration (i.e., onset and offset) of swallows are only approx-
imately known. In addition, it is known that φ contains data
that are sampled either from g1(φ|θ1) or g2(φ|θ2), depending
on whether or not a swallow occurred. Therefore, rather than
solving (13), only indicator functions defined as

ug1 (φi) =
{

κ, φi ∼ g1(φ |θ1 )
0, otherwise

(14)

ug2 (φi) =
{

1 − κ, φi ∼ g2(φ |θ2 )
0, otherwise

(15)

can be formed, where 0 ≤ κ ≤ 1. It is clear that ug1 + ug2 = 1.
The functions introduced by (14) and (15) indicate the presence
of different segments (i.e., no swallow or swallow), but the func-
tions do not reveal any information about the time boundaries
of these segments. Therefore, the next step is to determine these

boundaries. Let us write the two indicator functions as a matrix
U = [ug1 ug2 ]. Furthermore, the segment space is the set

Sφ =

{
U ∈ VU |ug1 , ug2 ∈ [0, 1] ;ug1 + ug2 = 1;

0 <

N∑
i=1

ugj i
< N for j = 1, 2

}
(16)

where ugj i
= ugj

(φi) and VU is the vector space of U . To
find these segments, i.e., the regions representing when φ
was sampled from either distribution, an objective function
Jm (U,v) : Sφ × R

+ should be minimized [25]

Jm (U,v) =
N∑

i=1

2∑
j=1

(
ugj i

)m (dji)
2 (17)

where

(dji)
2 = ‖φi − vj‖2 (18)

is the inner product induced norm; vj is the prototype of ugj
,

j = 1, 2; and m is the weighting exponent given by m ∈ [1,∞).
In this paper, m = 2. However, it should be noted that Jm (U,v)
can be minimized only if dji > 0 for {j, i|1 ≤ j ≤ 2, 1 ≤
i≤N},m > 1, and ugj

, vj are obtained through the follow-
ing iterative steps:

ugj k
=

[
2∑

o=1

(
djk

dok

)2/(m−1)
]−1

(19)

vj =
∑N

k=1

(
ugj k

)m
φk∑N

k=1

(
ugj k

)m , for j = 1, 2. (20)

This formulation is a two-class fuzzy c-means optimization
problem. For complete proof of the previous statements, refer
to [25]. Furthermore, this minimization can be simply realized
through Picard iteration of (19) and (20) [25].

1) Randomly initialize U (0) ∈ Sφ , and then at steps h =
1, 2, . . . .

2) Calculate {v(h)
j } with (20) and U (h−1) .

3) Compute U (h) using {v(h)
j } and (19).

4) If ‖U (h) − U (h−1)‖ ≤ ε, stop; otherwise, increment h and
return to step 2.

These steps yield two indicator functions, ug1 and ug2 , which
denote the absence or presence of swallowing on one axis.
For the dual-axis recordings, there are four indicator functions:
ug1 AP , ug2 AP , ug1 SI , and ug2 SI , with ug2 AP and ug2 SI repre-
senting independently the absence or presence of swallowing
vibrations in the A-P and S-I directions, respectively. However,
excessive noise along one of the axes may lead to an incorrect
estimate of swallow multiplicity in the corresponding signal.
Therefore, to obtain a more accurate estimate of the locations
and durations of swallows, the indicator functions from both
axes should be multiplied. Therefore, the dual-axis indicator
function uDA is given by

uDA = ug2 AP × ug2 SI =
{

ρ, φ ∼ g2(φ |θ2 )
0, otherwise

(21)
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where 0 � ρ ≤ 1. If desired, uDA can be turned into a binary
indicator sequence as

uDA =
{

1, ρ ≥ γ

0, otherwise
(22)

where γ is a predetermined threshold value. The proposed mod-
ification of Wang and Willett’s algorithm is intended to make
the algorithm applicable to very long and noisy datasets.

C. Algorithm Evaluation

The accuracy of the proposed segmentation algorithm was
studied in two ways: first, using a set of simulated test signals
with known change points, i.e., swallow locations, and second,
using a subset of signals with 295 real swallows manually ex-
tracted by two SLPs. In the analysis of both synthetic and real
signals, the values used for Lmin and Lmax are 2500 and 40 000
points, respectively. Furthermore, γ = 0.05 is used for the syn-
thetic signals, while γ = 0.1 is used for the real signals.

1) Validation With Synthetic Test Signals: In the collected
data, exact locations of swallow onsets and offsets were un-
known as corresponding videofluoroscopic sequences were not
acquired. The synthetic signals with known change points thus
provided a gold standard against which the segmentation algo-
rithm could be benchmarked.

To ensure that the test signals mimicked the dual-axis swal-
lowing accelerometry signals acquired in this experiment, the
following data generation rules applied.

1) For every realization, two signals should be generated: one
simulating acceleration in the A-P direction and the other
simulating acceleration in S-I direction.

2) There should be five distinct intervals where the variance
of the signals increases above the baseline variance.

3) Each of the five intervals should have random duration
and random frequency components to mimic intersubject
variations.

The following definition of a signal sj (n) adheres to the
previous rules

sj (n)=



so(n) +
∑4

w=1 0.2 sin(2πfjw nT ), n1 ≤ n ≤ n2

so(n) +
∑4

w=1 0.2 sin(2πfjw nT ), n3 ≤ n ≤ n4

so(n) +
∑4

w=1 0.2 sin(2πfjw nT ), n5 ≤ n ≤ n6

so(n) +
∑4

w=1 0.2 sin(2πfjw nT ), n7 ≤ n ≤ n8

so(n) +
∑4

w=1 0.2 sin(2πfjw nT ), n9 ≤ n ≤ n10

so(n), otherwise
(23)

with

so(n) =
15∑

l=1

bjl sin(2πfjlnT + θl) (24)

and where j = 1, 2 indexes the two directions; T = 0.0001 s;
1 ≤ n ≤ N and N ∼ N (60 0000, (50 000)2) with a con-
straint that N > 150 000; N > n10 > n9 > · · · > n1 ; |n2q −
n2q−1 | ∼ N (250 000, (5000)2) for 1 ≤ q ≤ 5 with a constraint
that |n2q − nq | > 5000; n2κ+1 − n2κ−1 = 
N/5�, where 1 ≤
κ ≤ 4; bjl is uniformly drawn from [0, 0.05]; fjl is uniformly

Fig. 2. Segmentation of test signals. (a) Realization of the simulated signal.
(b) Actual indicator sequence (dashed line) and the indicator sequence produced
by the algorithm (solid line).

drawn from [1, 5000]; θl is uniformly drawn from [0, π]; and
fjw ∼ N (90, (15)2) with a constraint that fjw > 1. Using the
earlier definition, 1000 pairs of dual-axis test signals were sim-
ulated. The top graph of Fig. 2 depicts a typical simulated test
signal.

Accuracy was defined as the number of correctly identified
high-variance segments divided by the number of all high-
variance segments. To be considered correct, an extracted seg-
ment had to overlap with the corresponding known segment by
at least 90%.

It should be noted that the model for dual-axis swallowing ac-
celerometry signals given by (23) does not necessarily represent
realistic swallowing signals, since the physiological character-
istics of such signals are still largely unknown. The proposed
model rather depicts statistical behavior of these signals, i.e.,
the activity regions have higher variances than the baseline re-
gions, and is only used for an accuracy analysis of the proposed
segmentation algorithm.

2) Validation Against Manually Segmented Swallows: As
a second evaluation step, two SLPs manually segmented 19
recordings representing saliva swallows (dry swallows), 20
recordings representing water swallows (wet swallows), and 19
recordings representing water swallows in the chin tuck position
(wet chin tuck). Manual segmentation involved the location of
onsets and offsets by visual inspection and auditory verification.
Each recording contained five or six swallows, yielding a total
of 295 swallows. It should be noted that the selected record-
ings were chosen to fairly represent the different age and gender
groups of the population under study.

In the validation against the human expert, we defined a cor-
rectly segmented swallow as one in which there was a minimum
90% overlap with the SLP extracted swallow. A sample swallow-
ing accelerometry signal is depicted in Fig. 3(a) along with a bi-
nary indicator function, where “high” denotes the presence of a
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Fig. 3. Definition of a correctly segmented swallow. (a) Signal (top) and a
binary function (bottom) indicating the occurrence of swallows as pinpointed
by an SLP. (b)–(d) Correctly segmented swallows where the algorithm (pulse
with dashed line) slightly over- or underestimates the swallow duration extracted
by the SLP (pulse with solid line). (e) Incorrectly segmented swallow.

swallow as indicated by the SLP. The second swallow is arbitrar-
ily selected in Fig. 3(b)–(e) to illustrate different segmentation
possibilities. In each graph, the dashed lines represent possible
indicator functions obtained by the algorithm. Evidently, to be
considered a correctly segmented swallow as in Fig. 3(b)–(d),
most of the swallow duration (≥ 90%) as indicated by the SLP
must be captured. Otherwise, the algorithm is deemed to have
incorrectly identified the swallow, as exemplified in Fig. 3(e).

After signals from all 408 participants had been segmented,
we used nonparametric inferential statistical methods and linear
regression analysis to test for potential effects of gender, BMI,
and age on swallowing duration.

IV. RESULTS AND DISCUSSION

A. Segmentation of Synthetic Test Signals

With the 1000 pairs of simulated test signals, the extraction
accuracy of the proposed algorithm was 97.7 ± 1.3%. Also, the
average duration of the extracted segment was (2.59 ± 0.50) ×
104 points, which is statistically similar (p = 0.18) to the aver-
age duration of the original segments (2.5 × 104 points). This
close agreement between original and extracted segment onsets,
offsets, and durations is illustrated in the bottom graph of Fig. 2.
Results with the test signals demonstrate that the proposed algo-
rithm is indeed capable of accurately extracting segments with
elevated variance and varying length from long time series.

B. Segmentation of Real Swallowing Signals

The results of the validation against manual segmentation
by the SLPs are summarized in Table I. Each row in the table
represents the performance of the segmentation algorithm on
one type of swallow.

TABLE I
ACCURACY OF PROPOSED SEGMENTATION ALGORITHM FOR SUBSET OF

SWALLOWS MANUALLY SEGMENTED BY SLP

Fig. 4. Sample of wet chin tuck swallowing vibrations in A-P and S-I direc-
tions along with the indicator sequence obtained by the proposed algorithm.

TABLE II
DURATION OF SWALLOWING SEGMENTS GROUPED BY GENDER (408

PARTICIPANTS)

Evidently, the proposed algorithm achieves very good overall
accuracy considering that the segmentation is performed on raw
data (i.e., there was no preprocessing of data). The lowest accu-
racy is achieved for wet chin tuck swallows. However, this is ex-
pected since the wet chin tuck swallows are manifested through
very complex signals, especially in the S-I direction, as shown
in Fig. 4. These vibrations are caused by head movement and, in
some cases, can overwhelm the vibrations of interest in the A-P
direction, encumbering detection by the proposed algorithm.

So far, extraction accuracy has been discussed. The tempo-
ral accuracy of the algorithm should be examined as well. To
this end, a comparison of the durations of manually and au-
tomatically segmented swallows was carried out. The average
durations are shown in the last two columns of Table I. Several
observations are in order. While the durations for dry and wet
swallows appear to agree closely with the durations obtained by
the SLP, a Wilcoxon rank-sum test revealed that the durations
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TABLE III
DURATION OF SWALLOWING SIGNALS GROUPED BY BMI (408 PARTICIPANTS)

are statistically similar only for the dry swallows (p = 0.10).
The durations of the wet chin tuck swallows were overesti-
mated by the algorithm, on average, by 1 s. This overestimation
was due to the overwhelming motion artifact depicted in Fig. 4.
With additional measurements, e.g., a head motion sensor, these
swallow durations could be further refined. We further note that
the segmented vibration signals likely included events associ-
ated with both the oral and pharyngeal phases of swallowing,
each of which persists for approximately 1 s [26]. This would
explain the algorithm’s overall average duration of 2.4 ± 1.1 s
in Table I, which, incidentally, is consistent with the tempo-
ral characterization of the oral–pharyngeal phase of swallowing
reported by Sonies et al. [19].

C. Analysis of Swallowing Signals’ Duration

The second goal of this study was to uncover any associations
between the duration of the segmented signals and the anthro-
pometric/demographic variables, namely, gender, BMI, or age.
The results of such an analysis are summarized in Tables II–IV
and are obtained using all 9800 swallows. The table entries
are average durations of the segmented signals in seconds for
different levels of the selected variables (gender, BMI, or age).
While both neck circumference and BMI were measured, a
simple linear regression analysis showed that these variables
were highly correlated. Therefore, neck circumference was
discarded and BMI was chosen for further analysis. The
latter variable is appealing since participants can be grouped
according to standardized BMI intervals [27].

In Table II, we see that events associated with wet swallows
are consistently manifested as the shortest signals (Wilcoxon
rank-sum test, p � 10−5), while the events associated with
wet chin tuck swallows tend to embody the longest signals
(Wilcoxon rank-sum test, p � 10−5). The extended length of
the wet chin tuck swallows has already been attributed to the
algorithm’s overestimation in the presence of excessive motion
artifact. Regarding the other types of swallows, Sonies et al.
also found that wet swallows were shorter than dry ones [19].
Finally, the swallowing signals obtained from male participants
were longer than those extracted from female participants for
dry and wet swallow types (Wilcoxon rank-sum test, p � 10−5).
This difference in duration can be attributed to gender-based
anatomical differences in the oropharyngeal mechanism [28].
The gender difference did not appear in the wet chin tuck swal-
lows due to the inflated variability in durations for this task,
likely due to motion artifact.

Inspection of Table III suggests that as a person’s BMI in-
creases, the duration of the swallowing events increases as well.
According to a regression test, this dependence on BMI is sta-
tistically significant for the events associated with wet chin tuck

TABLE IV
DURATION OF SWALLOWING SIGNALS GROUPED BY AGE (408 PARTICIPANTS)

swallows (p � 10−5). A possible explanation is that an increase
in adipose tissue results in an attenuation of the signal ampli-
tude and velocity [29]. The latter effect may allow the vibration
signal to decay more slowly, thereby extending the duration of
the measured activity.

We further remark that as the age of the participant increases,
the duration of the events associated with a swallow tends to
increase as well (Table IV). Based on the results of a regression
test, this dependence on age is statistically significant for the
events associated with all types of swallows (p � 10−5). This
trend may be attributed to the age-related decoupling of oral and
pharyngeal stages of swallowing [26], leading to longer overall
swallowing times.

As the last remark, it should be pointed out that the current
data collection has been carried out in a relatively controlled
environment, i.e., healthy subjects with no known swallowing
difficulties and good cognitive skills. Hence, excellent segmen-
tation accuracy has been achieved without any preprocessing of
the data. Nevertheless, as has been pointed out in Section II,
recordings containing disturbance signals have not been used in
the current study. Disturbance signals such as cough, speech,
and excessive head movements confound the proposed segmen-
tation algorithm. However, data from a pathological population
would likely be plagued with such artifacts. Therefore, prior
to applying the proposed algorithm to patient data, we antici-
pate that it would be necessary to explicitly remove disturbance
signals from the dual-axis swallowing accelerometry signals.

V. CONCLUSION

In this paper, a sequential segmentation algorithm was pro-
posed for dual-axis swallowing accelerometry signals, owing to
their potential for noninvasive diagnosis of swallowing difficul-
ties. The algorithm is based on a piecewise fuzzy partitioning
of the signal and is well suited to long signals with nonstation-
ary variance. Dual-axis swallowing accelerometry signals from
three swallowing tasks completed by 408 healthy participants
were automatically segmented. In comparison with simulated
signals with known swallowing locations and a subset of real
swallows extracted manually by an SLP, the proposed algorithm
yielded over 90% accuracy. Of the three types of swallows
considered, wet chin tuck swallows were the least accurately
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segmented due to excessive motion artifacts. Durations of the
extracted segments increased with increasing BMI (wet chin
tuck type) and age (p = 0.05), while male participants exhib-
ited longer swallowing events than females for dry and wet
swallows (p = 0.05).
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